

Alternative Climate Normals: A Philosophical View

Anthony Argüez

NOAA's National Climatic Data Center

Key Takeaway Messages

 Traditional Normals don't account for climate change

 Alternative Normals can be derived by changing the generalized formula we use to calculate Normals

Energy Industry is a natural partner for these efforts

1981-2010 Normals

- Official (legacy) product
- Designed for stationary climates
- 30-Year Averages
- Large suite of variables
- Produced every ten years

Alternative Normals

- Experimental products
- Accounts for climate change
- N-Year Averages, Linear Fits, etc.
- Monthly temperatures (currently)
- Uses most recent data available

Timeline RENEWED INTEREST IN ALTERNATIVES AT NCDC

- 2005: Preliminary discussions on "Dynamic Normals"
- 2006: a. Letter from Cascade Natural Gas
 b. Bob Livezey research (became Livezey et al. 2007)
- 2007: a. May Telecon on "Optimal Normals"
 b. September Webcast on "Optimal Normals"
- 2008: Continued Engagement: load forecasters, PUC/PSCs
- 2009: "Alternative Normals" release with webcast
- 2009-2012: AMS Energy Committee
- **2010-2011:** Focus on Traditional Normals, Hourly Normals
- 2011: Argüez and Vose appears in BAMS

Philosophical Issues

- Climate Normals are calculated retrospectively, but are utilized prospectively
- The best predictor of future behavior is past behavior
- Is the climate stubborn?
- But can we really assume the climate is stationary?
- If not, climate normals are not representative of the current state of the climate, much less future climate conditions

Philosophical Issues, Continued

- Dual purpose of Normals:
 - A point of reference (i.e., for monitoring)
 - As a predictive tool (e.g., for planning)
- For a stationary climate, traditional normals work for both purposes
- Little reason to update them frequently IF AT ALL
- Moving the goal posts...
 - Fixed normals: An observation of 83°F will always be 2°F above a 81°F Normal
 - Updated normals: 83°F can be above normal one year and below normal the next year if the normal is updated

Philosophical Issues, Continued

- Dual purpose of Normals:
 - A point of reference (i.e., for monitoring)
 - As a predictive tool (e.g., for planning)
- For a non-stationary climate, traditional normals still work as points of reference, but the predictive ability is compromised
- Climate change renders the traditional climate normal inadequate as a predictive tool, necessitating the development of alternative climate normals

A Generalized Normals Equation

$$y(t_0 + k\Delta t) = \sum_{t_0 + k\Delta t - N + 1}^{t_0 + k\Delta t} w(i)x(i)$$

INGREDIENTS

y: climate normal

w: weighting function

x: annual climate time series

Δt: update frequency

 t_o : reference year

k: any integer

N: number of years averaged

The Traditional Normals Equation

$$y(t_0 + k\Delta t) = \sum_{t_0 + k\Delta t - N + 1}^{t_0 + k\Delta t} w(i)x(i)$$

$$y(t_0 + 10k) = \frac{1}{30} \sum_{i=t_0+10k-29}^{t_0+10k} x(i)$$

Just One Recipe

The 1981-2010 Normals Equation

$$y(t_0 + k\Delta t) = \sum_{t_0 + k\Delta t - N + 1}^{t_0 + k\Delta t} w(i)x(i)$$

$$y(t_0 + 10k) = \frac{1}{30} \sum_{i=t_0+10k-29}^{t_0+10k} x(i)$$

$$y(2010) = \frac{1}{30} \sum_{i=1981}^{2010} x(i)$$

- temporal average
- the average is unweighted
- the averaging period is thirty consecutive years
- a causal filter (using past and current values only)
- updated once per decade

temporal average

$$\frac{1}{30} \sum x(t)$$

- the average is unweighted
- the averaging period is thirty consecutive years
- a causal filter (using past and current values only)
- updated once per decade

- temporal average
- the average is unweighted

$$w = \frac{1}{30}$$

- the averaging period is thirty consecutive years
- a causal filter (using past and current values only)
- updated once per decade

- temporal average
- the average is unweighted
- the averaging period is thirty consecutive years
 N=30
- a causal filter (using past and current values only)
- updated once per decade

- temporal average
- the average is unweighted
- the averaging period is thirty consecutive years
- a causal filter (using past and current values only)
- updated once per decade

$$y(t_o + 10k) = \frac{1}{30} \sum_{i=t_o+10k-29}^{t_o+10k} x(t)$$

$$y(2010) = \frac{1}{30} \sum_{i=1981}^{2010} x(t)$$

- temporal average
- the average is unweighted
- the averaging period is thirty consecutive years
- a causal filter (using past and current values only)
- updated once per decade

$$y(t_o + 10k) = \frac{1}{30} \sum_{i=t_o+10k-29}^{t_o+10k} x(t)$$

$$y(2012) = \frac{1}{30} \sum_{i=1981}^{2010} x(t)$$

$$y(2010) = \frac{1}{30} \sum_{i=1981}^{2010} x(t)$$

- temporal average
- the average is unweighted
- the averaging period is thirty consecutive years
- a causal filter (using past and current values only)
- updated once per decade

$$y(t_o + 10k) = \frac{1}{30} \sum_{i=t_o+10k-29}^{t_o+10k} x(t)$$

$$y(2019) = \frac{1}{30} \sum_{i=1981}^{2010} x(t)$$

- temporal average
- the average is unweighted
- the averaging period is thirty consecutive years
- a causal filter (using past and current values only)
- updated once per decade $\Delta t = 10$ years

Temporal Average

- the defining characteristic of climate normals
- essentially a running average, climate normals smooth out year-to-year variability to try and capture the 'background state'

ALTERNATIVES

- Median
- Linear or 'Hinge' Fits (time-dependent)
- Empirical Mode Decomposition (time-dependent)

Unweighted Average

- Every year in the averaging period carries the same level of influence
- Works best when there is no trend, autocorrelation
- Why not give more weight to more recent years?

ALTERNATIVES: weighted averages

- Weights determined theoretically
- Weights determined empirically

N = 30 years

- 30 is the "rule of thumb" minimum for samples
- Changing N is most common approach for alternative normals
- For stationary time series, N should be large
- For non-stationary time series, N should be small

ALTERNATIVES: N-year averages

- Arbitrarily select 10, 15, 20 year averages
- Optimal Climate Normals (OCN): fixed at N=10 for temperature and N=15 for precipitation
- Livezey et al. (2007): analytical OCN, not fixed

Causal Filter

- Only consider past and present values
- No forecasting & Not centered averages
- Are the 1981-2010 normals representative of climatic conditions in 1995/1996?
- In 2010, the 1971-2000 normals were still the official version of normals 1985/1986?

ALTERNATIVES: using projections (of future values)

- Statistical forecasting (e.g., ARMA model)
- Downscaled climate model projections
- Can also lead to estimates of "future normal"

Decadal Update

- WMO recommendation (mandate is every 30 years)
- Updating normals is not as critical for stationary climate series
- For non-stationary climate series, updates should be as frequent as possible (for predictability)
- Otherwise, the normals become increasingly obsolete as we progress through the decade

ALTERNATIVE:

Update climate normals every year

Alternative normals of July Tmax and January Tmin for Chicago, IL (Midway) **T = Traditional (1971-2000)** O = OCN U = Annual Update H = Hinge Fit

CPC Perspective

- NOAA's Climate Prediction Center (part of NWS)
- CPC has used Optimal Climate Normals as a forecast tool since 1995
- CPC forecasts are relative to 1981-2010 normals computed "in house." This approach has many advantages, including freedom to use different OCN for temperature & precipitation, etc.
- CPC does not recommend OCN to be the alternative normal. It is argued that OCN is not aggressive enough is following temperature trends. This can be examined quantitatively

Energy Industry's Unique Role

- AMS Energy Committee support
- Support from folks in the room
- Impacts:
 - load forecasting
 - rate cases (both utilities and regulators)
 - building design standards
 - T&D equipment very capital intensive industry
- Climate change impacting operations
- Adaptation
- Can Alternative Climate Normals help?

Key Takeaway Messages

 Traditional Normals don't account for climate change

 Alternative Normals can be derived by changing the generalized formula we use to calculate Normals

Energy Industry is a natural partner for these efforts

Alternative Climate Normals: A Philosophical View

Anthony Argüez
NOAA's National Climatic Data Center

