NMQ/Q2 Radar Reanalysis

Scott E. Stevens – CICS-NC, NC State University, NCDC

Brian R. Nelson – NCDC

Carrie L. Langston – CIMMS, University of Oklahoma, NSSL

Outline

- Motivation
 - Why is this product needed?
 - How does it improve on the current state of affairs?
- Product Introduction
 - Just what is it, exactly?
 - What can we get out of it?
- Pilot Project
 - Sounds nice. What does it look like?
- Next Steps and Long-Term Goals
 - Why isn't it finished yet?

What is this and why do it?

- NOAA does not maintain a high-resolution precipitation product
 - Impacts modeling, forecasting, flood guidance, etc.
- Currently available products have limitations
 - Spatial Resolution
 - Temporal Frequency
 - Accuracy
- NMQ/Q2 represents a significant step in precipitation estimates

Surely this exists already...

- Global Precipitation Climatology Project (GPCP)
 - 1 day x 100 km (about 3-4 counties)
- TRMM 3B42 (satellite-based)
 - 3 hours x 25 km (small city)
- MPE (radar-based)
 - 1 hour x approx. 4 km (small town)
- Gauge-based precipitation estimates
 - 1 hour 1 day x approx. 20 km

NMQ/Q2: Next Generation QPE

- Developed at the National Severe Storms Laboratory (NSSL) in Norman, OK
 - Research/Development arm of NOAA
- Multi-sensor estimate of precipitation
 - Primarily surface radar-based
 - Incorporates RUC model data and gauge networks
- Represents significant step in resolution
 - 0.01 degree (1-km spatial resolution)
 - Neighborhood scale
 - 5-minute temporal resolution

GPCP (100 km) Resolution

TRMM (25 km) Resolution

MPE (5 km) Resolution

Courtesy: NC State Climate Office

NMQ/Q2 (1 km) Resolution

Q2 Pilot Project (1998-2010)

Q2 Process

- WDSS-II (Warning Decision Support System Integrated Information)
 - Ingests raw radar data and model data
 - Performs QC
 - Merges all radars into a single gridded mosaic
- NMQ (National Mosaic and Multi-Sensor QPE)
 - Performs analysis on gridded data to generate valueadded products (bright band, hail statistics, VPR)
- Q2 (Next-generation QPE)
 - Final step of NMQ process, generates precip estimates

Q2 Output

- Provides precipitation estimates at 1-km resolution every five minutes
- Three-dimensional radar reflectivity
- Various value-added products
 - Echo Tops
 - Bright band heights
 - Vertically integrated liquid, etc.

Mosaic Reflectivity

Monthly Accumulation

- Precipitation patterns
 realistic and comparable
 to gauge measurements
 from same time period
- Beam blockage effects evident from radars in mountainous regions (KMRX, KGSP, KFCX)
- Streaking in SW portion of domain result of processing glitch

Seasonal Accumulation

- Beam blockage still evident
- Inconsistency in SW portion of region still result of processing

Current Status

- Working toward expanding to cover the entire continental US
- Receiving frequent software updates from NSSL
- Adapting for use on a parallel computing system
 - Stringing steps together into single scripts
 - Data organization
- But there are challenges...

Issues that have arisen

- Computing horsepower
 - Each radar must be processed one day at a time
 - 140 radars x 365 days x 15 years = 766,500 individual scripts to be run just for the first half
 - Memory limitations
 - Mosaic process requires a large amount of RAM
 - Having difficulty finding enough machines that can run it
- Size of data
 - Difficult to find a place to stage and store all of the input and output data involved

Just how much data?

- GHCN-M: Global monthly temperature record for all of recorded history – 100 MB
 - Used for "warmest month" statements, often referred to in climate publications
- Standard DVD: 4.7 GB (about 48 times as much)
- Level-II NEXRAD archive: 150 TB
 - 1.5 million times the size of the temperature record
 - **32,000 DVDs**
 - Growing by over 50 GB every day
 - Takes less than 3 minutes to accumulate 100 MB

Applications

- If product is made operational
 - High-resolution precipitation estimates at near real-time
 - Flash flood guidance at 1-km resolution
 - Short-term hydrology forecasting
- Research Applications
 - Endless possibilities for climatological studies
 - Orographic influence
 - Tropical cyclone precipitation contribution
 - Contributions from individual storm events
 - Very precise querying
 - How much did it rain on my house from 11:05 11:25 on February 17, 1999?

The Goal

- Archived Precipitation Estimates
 - Full reanalysis of all US NEXRAD data for period of record
 - Put in NCDC archive as climate data record for future research in other applications
- Using reanalysis mode to provide feedback to NSSL
 - Can be quickly reprocessed under different circumstances
 - Identify strengths and limitations to improve product

Summary

- Very exciting but intensive project
 - Improve resolution of precipitation estimates by a factor of nearly 5
 - Improve time resolution from hours to minutes
- Create a homogeneous, easily searchable database of precipitation records from the mid-1990s to present
- Always improving algorithms to increase accuracy
 - Reanalysis mode will allow us to re-process the data more quickly

Questions?

Scott Stevens
CICS-NC
828-257-3019
scott@cicsnc.org

http://nmq.ou.edu

