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Climate Change - Hydrologic Impli

» Increasing Temperatures
» Evapotranspiration
» Water Quality
» Change in Precipitation Patterns

° _A % e
» Streamflow; Water ST
availability
. Precipitation -
» Intensity, Frequency and ;
Magnitude of Floods and
D rough tS Salt Water Intrusion in Coastal Areas

Excess

» Groundwater Recharge b
» Rise in Sea Levels
» Inundation of coastal areas
» Salinity Intrusion




Need for Downscaling - Hydrologic Impac

Assessment

Some existing gaps between GCMs” ability and hydrology need

Better simulated  Less-well simulated  Not well simulated

Spatial scales Global
Mismatch 500% 500 km

Temporal scales ~ Mean annual

Mismatch and seasonal
Vertical scale 500 hPa
Mismatch

Working variables  Wind
Mismatch Temperature
Air pressure

Regional Local

50x 50 km 0-50 km

Mean monthly Mean daily

800 hPa Earth surface
Cloudiness Evapotranspiration
Precipitation Runoff

Humidity Soil moisture

GCMs’ ability declines

—

Hydrological importance increases - s ——

Source: Xu Chong-Yu, Water Resources Management 13: 369-382, 1999.

GCM Resolution
e.g. HADCM2 2.50 x 3.750

.

Regional Climate Model
Resolution e.g. 50km

Aggregation

% Hydrology

Vegetation

Topography
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Social Systems




Distributed hydrologic models

Distributed Model Data: Cell Connectivity

4\/ Drainage Network

Simulate Streamflow,

A ::m Evapotranspiration, Soil
S~ Drainage Basin Boundary Moisture, Deep percolation,

Detention Storage and other
surface water processes

NOAA | NWS | The COMET Program



Downscaling & uncertainties of the GCM output

basin scales
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Uncertainties




Study Area: Upper Ganga Basin (UG
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Elevation profile — 21 m to 7796 m from 500 mm to 2500 mm

¢ Average annual temperatu
around 21°C.




Model Structure

A systems approach with coupling between atmosphere, 1
groundwater systems.

MetUM: CAM4
(Climate model runs)

|

Soil Moisture;
Evapotranspiration
CLUE-S
(Land use
Chan e mOdel Precipitation Heat E €O, CH, M
g ) Rldhﬂon\ / ///
CMIP5 h _/_,‘,;jf,
(Ensemble of e - o ﬁ
climate models) : o
Projection of
VIC/JULES water resources

Downscaling and (Land surface model)

Uncertainties l I

ZOODRM
(Groundwater model) Policy options




LULC Analysis: Change Location Map
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Change location map of UGB between 1973-2011
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Hydrologic Modeling: Meteorological Input
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Hydrologic Modelling

Carried out at IISc, Bangalore and
Imperial College, London

IISc:

R

»  Setting up the  Variable Canopy
Infiltration ~ Capacity  (VIC) Layer |
hydrologic model at 0.5 degree ©~ 7]
resolution over the Upper Ganga (10-40 cm) ,
basin

Layer 3

(40— 100 cm)
.

* Evaluating the effect of land use
and climate on hydrological
regime of the basin using VIC
model.
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* Isolating the individual impact of _*°
land use and climate change on = |
streamflow

—— 1973 Climate, 1973 LU
— 1980 Climate, 1980 LU
—— 2000 Climate, 2000 LU
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* Climate change 1s the dominant
contributor to the observed . . | . . | | | | . .
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Projecting Climate Change Impacts on

Climate Change Projections Topography, Land-

(precipitation, temperature, use/Land Cover ; Soil

radiation, humidity) characteristics; Other
catchment data

Downscaling

Hydrologic Model

l

Possible Future Hydrologic
Scenarios on Basin Scale

(Streamflow, Evapotranspiration, Soil
Moisture, Infiltration, Groundwater
Recharge etc.)




Location of II'T-B and Cordex Downscaled Dat
along with IMD Grid Points
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Climate Data from CORDEX

* Projections of Rainfall (P), maximum temperature (T,,,), minimum temperatur
speed (W) — procured from CORDEX South Asia group at daily scale

GCMs from the CORDEX project used in the study

Modeling Center-Experiment Driving GCM
Institution
Name (Abbreviation)
ACCESS1.0 (ACC) [CSIRO
CNRM-CMS5 (CNR) | Centre National de Recherches Meteor
CCSM4 (CCS) National Center for Atmospheric Res\earc
GFDL-CM3 (GFD) | Geophysical Fluid Dynamics Laboratc\ry
MPI-ESM-LR (MPI) | Max Planck Institute for Meteorology ('MPI-

NorESM1-M (NOR) [ Norwegian Climate Centre \

Commonwealth Scientific and

Industrial Research Organization,
(CSIRO) Australia CCAM

Climate variables obtained from the GCMs were bias corrected with respect t
ata at daily scale.



Summary Measures for Upstream Region — Future Projecti

Observed Discharge Mean (Historical) = 776.97 cume
Observed Discharge Std. Dev. (Historical) = 802.85 cu

RCP 2.6 RCP 4.5
Mean >td. Mean >td. Mean
Dev. Dev.
(cumecs) (cumecs) (cumecs) (cumecs) (cumecs)
ACCESS1.0 1041.42| 795.00| 1069.94
' CCSM4 1096.24 | 1076.87 | 1058.91
i © [GFDL-CM3 792.93| 678.61| 1071.20
% 6 CNRM-CM5 1049.56 | 791.20| 1049.87
O MPI-ESM-LR 1040.74| 797.05| 1082.43
Nor-ESM-M 1046.66| 789.09| 1084.37
BCC 880.34 | 622.96 | 868.68 | 611.38 | 870.87
% CCCMA 874.86 | 607.87 | 895.97 | 632.23 | 879.68
2 IPSL 876.63 | 633.12 | 893.98 | 623.28 | 908.27
= |MIROC 845.29 | 570.38 | 835.93 | 560.14 | 859.81
Ié Nor-ESM-M 886.86 | 621.64 | 879.95 | 605.09 | 896.1
= |Ensemble Mean (cumecs) Std. Dev.
944.52




Analysis of Climate Data from CORDEX -
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Taylor diagram for (a) P (mm) (b) T,.., (°C) and (c) T,,, (°C) for upstream region

Models are observed to be clustered - all the GCM outputs are from the same modell

Model outputs for T, and T, are closer to the observed data (represented by p
reflecting better quality of GCM outputs for T

orrelation of 0.6-0.7 was obtained between GCM P and observed P — consi

.-
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Analysis of Climate Data from CORDEX — Overall a

* In general, annual P
may decrease
across all the three
regions in the UGB
in future compared
to historic/observed
values.

* Annual T, and T,
in upstream and
midstream region is
found to increase in
future time periods.

Higher variability
amongst the model
values is observed
for qg5 — higher
uncertainty in the
CMs to simulate
xtreme events.
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Analysis of Climate Data from CORDEX -

Upstream . Midstream Downstream
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* GCM outputs for future time period —
aggregated into five time slices:
T1 (2010-2020), T2 (2021-2040), T3 (2041-
2060), T4 (2061-2080) and T5 (2081-2100).
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* Comparisons made between the annual
means of the future time slices’ and the
baseline period (1971-2005)
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* Monthly variability in P — decline during

monsoon months and increase during winter

months — result in shift in f! _,! %
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* Longitudinally from upstream to downstream Change in ensemble mean of P, T, and T,
— variations in P in downstream region are  paseline period for RCR 4.5 (first bar of every
much more severe. of all the plots) and RCP 8.5 (second bar of

slice of all the plots) scenarios at each tim

Monthly mean T, and T,,, — increase significantly during winter months and decli
to September in all the regions.

ongitudinally from upstream to downstream — downstream region may ex
crease inthe mean T, and T,



Climate Change Effect on Streamflo

* LU is kept fixed for 1971 — climate varied continuously for the baseline period
future scenarios (2010-2100).

* Simulation results obtained were compared with the baseline simulation results.
* Runoff ratio (RR) is computed:
9

RR ==where,Q is average annual runoff and P is precipitation

Runoff Ratio across time slices for upstream, midstream and downstream region
(terms in parentheses indicate the percent change from the baseline values)

Regi Time Period Rainfall (mm) Runoff (mm) Runoff Ratio
egion
9 RCP 4.5 | RCP 85| RCP4.5 |RCP85(RCP4.5|RCP 8.5
Baseline 1294 1294 772 772 0.60 0.60
T1 1196+172 | 1210+46 | 697+84 | 683+32 | 0.58 0.56
(-8) (-7) (-10) (-12) (-2) (-4)
T2 10844480 | 1257+43 | 619+287 | 715+30 | 0.57 0.57
(-16) (-3) (-20) (-7) (-3) (-3)
Upstream T3 1377+171 | 1323+£32 | 816+£137 | 771+£26 | 0.59 0.58
(+6) (+2) (+6) (0) (-1) (-2)
T4 1416198 | 1357+42 | 845+163 | 800+38 | 0.60 0.59
(+9) (+5) (+9) (+4) (0)
T5 1424+182 | 1405+27 | 854+£148 | 842+26 | 0.60
(+10) (+9) (+11) (+9) (0)




Climate Change Effect on Streamflo

* RR - 60% for the upstream region,
44% for the midstream region and
23% for the downstream region
during the baseline period.

* Upstream region — characterized by
mountainous terrain and steep
slopes, most of the P gets converted
to Qg (high RR).

* Downstream region — flat terrain,
much of the P get evaporated or
infiltrated into soil and little gets
converted to Qg (low RR).

* P does not change significantly
from the baseline period, increase
in T results in reduced RR.

°* The RRis observed to increase and
approach towards baseline RR with
slight increase in P (irrespective of
changein T)

T3 and T4 (RCP 4.5 and RCP 8.5)
for downstream region, P is
observed to reduce accompanied by
an increase in T — reduction in RR is
not observed

This anomaly could be attributed to
occurrence of short duration dense
ainfall events in the region.

Time Period Rainfall (mm)
Region
RCP 4.5 | RCP 85| RCP4.5
Baseline 1009 1009
T1 844+84 | 871+63 | 323+31
(-16) (-14) (-27)
T2 787+265 | 884+53 | 296+115
(-22) (-12) (-33)
Midstream T3 1003+135 | 952+31 | 41377
(-1) (-6) (-6) (-14)
T4 1062+159 | 1016+28 | 462+101 | 427+23
(+5) (+1) (+5) (-3)
T5 1071+£160 | 1058+21 | 471+121 | 452+21
(+6) (+5) (+7) (+3)
Baseline 826 826 192 192
T1 579+63 | 590+55 | 102+13 [ 107+19 ( O.
(-30) (-29) (-47) (-44)
T2 557+183 | 589+40 | 89443 | 104+13
(-32) (-29) (-54) (-46)
Downstream T3 721+108 | 663+38 | 141+34 | 127+13
(-13) (-20) (-27) (-34)
T4 743128 | 73123 | 150+46
(-10) (-11)
T5 785+101 | 771+37

(-9)

(-6)




Hydrologic Impacts of Future Land Use and Clim

* 48 streamflow simulations under each nonstationary and stationary m
obtained — 6 GCMs * 2 emission scenarios * 4 LU scenarios

* Nonstationary : Model parameters are varied for future simulations

e Stationary: Model parameters, as obtained for historic time period are
simulations
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Annual mean and quantile values of streamflow for (a) Upstream; (b) Midstream; and (c) Dow,
regions of the UGB under future conditions with stationary (S) and nonstationary (NS) model c
historic (His) time periods

treamflow is noticed to decrease in future for both nonstationary and st
ecrease in rainfall and increase in temperature obtained for future projecti



Uncertainty Contribution from Different So

* Total uncertainty in the streamflow projections is decomposed to individua nts — (i)
GCMs, (ii) emission scenarios (Sce), (iii) Land Use (LU), (iv) hydrologic mod rs (MP)
— assumed to be stationary or nonstationary, and (v) and internal variability system
using the ANOVA approach
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Contribution of different factors to total uncertainty of annual streamflow projections (change infmean, 5th
quantile, 50th quantile and 95th quantile) for (a) Upstream; (b) Midstream,; and (c) Downstreani tegions of the
UGB under both stationary and nonstationary model conditions

®* GCMs + Scenarios and Model Parameter assumption of nonstationarity Jand-stationarity are
observed to be significant sources of uncertainty



° |In the nonstationary case, GCMs and Sce are observed to be the dominan
uncertainty in streamflow across all the cases.

* Contribution from LU is also noticeable across all the cases
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Concluding Remarks

» CORDEX output is useful in assessing hydrologic impacts
- a larger number of GCMs and scenarios would be useful
in addressing uncertainties.

» It is possible to partition the uncertainties arising from
different sources, in the Hydrologic Impacts : Climate
Models, Scenarios, Hydrologic Model Parameters, Land
Use Change

» Quantification and reduction of uncertainties in the
impact assessment models is critical.




