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Executive Summary
Climate change is expected to adversely affect public health through multiple 
pathways.1 Assessing the projected health burden is an important step for public 
health agencies to prepare for these impacts. This can be done qualitatively or 
quantitatively, but quantitative projections may provide more useful information 
about likely impacts. 

Many health departments are not particularly familiar with scenario-based, 
quantitative disease projections.2 To facilitate this process, the Climate and Health 
Program (CHP) at the Centers for Disease Control and Prevention (CDC) developed 
the Building Resilience Against Climate Effects (BRACE) framework.3 As part of 
BRACE, health agencies are encouraged to produce estimates of the future burden of 
disease for climate-related health outcomes. These estimates can then be used to rank 
the health outcomes, prioritize preventive actions, and design health adaptation plans. 

This guide presents a starting point for health departments interested in developing 
climate change health impact projections and lays out a general map of the process 
of establishing exposure-response relationships and developing scenario-based 
projections. The specifics of the process used to project future disease burden will 
vary greatly depending on local climate impacts, underlying vulnerabilities, the 
disease of interest, and other factors. While there is no “gold standard” for projecting 
the health impacts of climate change, our goal is to provide a digestible but thorough 
overview that will orient those interested in projecting climate change disease burden 
to facilitate public health preparedness for the challenges ahead. 

The iterative use of models in an adaptive management approach is an important part 
of this process.  Agencies can revisit steps to update their assessment of future health 
projections as the scientific evidence-base grows about climate impacts mediated 
through complex human-environment systems affecting public health, and relevant 
datasets become available to model pathways. 

To illustrate the process, two examples—one on heat-related disease and one on 
waterborne disease—are used to demonstrate the steps in the process, highlight 
specific issues that might be encountered, and outline potential solutions.

http://www.cdc.gov/climateandhealth/
http://www.cdc.gov/climateandhealth/
http://www.cdc.gov/
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Introduction
Weather and climate have a wide range of impacts on human health. Climate change, 
which is expected to shift weather patterns and modify weather extremes, will likely 
influence public health via multiple pathways, with adverse impacts predominating.1 
Some health impacts are already apparent.4 

Public health agencies can take a host of steps to minimize and prepare for associated 
risks.5 One important step is assessment of key public health vulnerabilities.6 Another 
important and related step entails projecting the disease burden that climate change 
may cause.3 Such climate change disease burden projections can be considered a form 
of comparative risk assessment as advanced by the World Health Organization.7 One 
significant difference between climate change disease burden projections and other 
Health Impact Assessment (HIA) efforts is that the exposures being projected are 
weather variables generated by global climate models. These variables are then linked 
with functions that describe observed relationships between environmental exposures 
and disease outcomes to quantify human health impacts.8

Climate change disease burden projections are similar to other scenario-based 
modeling efforts used in public health. Examples include projections of the cholera 
outbreak trajectory in Haiti,9 the Ebola epidemic in West Africa,10 and long-term 
projections of public health resource needs.11 While methodological specifics vary, all 
are decision support tools that can help clarify how disease dynamics may shift in the 
future, highlight the consequences of particular management choices, and determine 
what resources are needed to achieve disease prevention and control goals. 

Climate change disease burden projections also have potential for iterative use in an 
adaptive management process that will allow practitioners to continuously update their 
models with new information as the climate shifts and stakeholder needs evolve.12-14

Because climate change disease burden projections are so central to public health 
preparedness for climate change, the Climate and Health Program (CHP) at the 
Centers for Disease Control and Prevention (CDC) has strongly encouraged its state 
and local public health department partners to use them in their adaptation planning 
efforts. In particular, the CHP has made climate change disease burden projections 
a central component of its Building Resilience Against Climate Effects (BRACE) 
framework,3 depicted in Figure 1. This report provides specific guidance related to 
BRACE Step 2, the projection of climate change health impacts.

Reader’s Note 
This report is designed to be read both as a standalone document and online. 
As such, it has multiple internal links to definitions in the glossary, figures, 
and other parts of the report; it also has external links to outside resources. 
Important concepts are emphasized with italics.

http://www.cdc.gov/climateandhealth/
http://www.cdc.gov/climateandhealth/
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The BRACE framework is diagrammed below in Figure 1. The first step of BRACE 
outlines how agencies can incorporate projections of climate impacts (e.g., changes in 
temperature and precipitation) in their jurisdictions, identify relevant environmental 
hazards and associated health effects, and conduct a vulnerability assessment to 
identify places and communities at risk from those health outcomes. The second step 
builds on the first in terms of estimating the future burden of the identified health risks.  

Figure 1. Steps in the BRACE (Building Resilience Against Climate Effects) framework.
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This guidance document elaborates on the second step of BRACE by providing details 
of the different tasks involved and practical examples highlighting applications 
relevant to that process.

The second step of BRACE includes this sequence of activities:

1. Develop a causal pathway linking exposures/environmental hazards to health 
outcome(s). While not all steps in the pathway will be explicitly modeled, it 
is important to have an in-depth understanding of etiologic processes and 
important influences.

2. Use ensemble projections from global climate models to identify how the 
exposure/environmental hazard may change in intensity and duration in  
the future. 

3. Establish the baseline disease burden of the health outcome in the population 
of concern.

4. Assess the exposure-outcome association that denotes how an increase 
in the exposure affects the health outcome. Since the exposure-outcome 
associations may vary across different places, using locally available data to 
derive quantitative estimates may be beneficial. However, lack of local data and 
inadequate scientific information may lead to reliance on qualitative assessment 
or use of estimates available in the literature.

5. Project the health burden in a changed climate using a mathematical model  
to combine these different estimates. Conjectures regarding how future 
adaptation efforts can reduce the adverse health impacts may be included in 
deriving these estimates.

6. Evaluate the uncertainty inherent in the derivation of these different estimates.

This report is divided into three parts: the first section goes through each of the 
components of BRACE Step 2, providing a general conceptual overview with some 
technical information. The second section is a short discussion of the iterative use 
of modeling efforts in ongoing adaptation planning. The third section provides two 
examples of how BRACE Step 2 can be performed to project specific health impacts. 
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Conceptual Overview
There are several steps involved in generating climate change disease burden 
projections. The process can be qualitative or quantitative, but typically more useful 
information and insight are gained from quantitative projections. A general diagram of 
the steps involved is in Figure 2; we will return to versions of this diagram throughout 
the report to help orient readers.

Figure 2. The generic steps involved in generating climate change disease burden 
projections. 

Develop Causal Pathway
As described further in the Causal Pathway section, causal pathways linking a climate-
sensitive exposure to health outcome(s) of interest are central to climate change 
disease burden projections. Causal pathways (also known as exposure pathways or 
causal process diagrams) are schematic representations of how an exposure affects 
health outcomes. They can be elaborated with varying degrees of complexity by 
adding potential modifiers and can be static or dynamic,15 and are particularly useful 
for identifying and assembling the data elements that will be needed to pursue the 
modeling effort.

Assemble Data Elements
Once a causal pathway has been developed, the next step is to assemble the necessary 
data, including projections of climatic shifts using global climate models (GCMs). GCMs 
project future climate states using scenarios, sets of assumptions about the trajectories 
of major climate drivers (also known as forcings) including greenhouse gas emissions; 
this is explained further in the Climate Data section. The cardinal environmental 
impacts projected by GCMs are warming, more variable weather, and rising sea levels. In 
many cases, these are the exposures of interest for disease burden projections, though 
sometimes relevant exposures are the combined result of shifts in temperature and 
precipitation (e.g., drought), or more complex secondary ecological shifts. 

Another important data element is baseline health data, as projections of health 
outcomes require a baseline from which to start. Such baseline data are the subject of the 
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Baseline Disease Burden section and are typically in the form of a disease prevalence 
or incidence (e.g., annual rates of emergency department visits for heat stroke). In 
addition to the baseline rate, it is important to know details related to the baseline 
population demographics, as these can affect exposure and disease susceptibility and 
significantly affect projected disease estimates.

Baseline health data serve as the starting point for projecting health impacts using 
modeled exposures from GCMs and retrospectively derived associations between 
observed exposures and outcomes (termed exposure-outcome response functions or 
concentration-response functions and sometimes denoted as a). Discussed further in 
the Exposure-Outcome Response Function section, these functions can be empirically 
derived from observational studies or obtained from the literature. Regardless of how 
the function is derived, the section on Source Populations highlights the importance 
of paying close attention to the source population characteristics so that equitable 
comparisons can be made.

Project Disease Burden
Once all data elements are assembled, they are combined using a modeling approach 
that captures the relationships outlined in the causal pathway to project the health 
burden in the future. Some of the most common approaches used in public health are 
described in detail in the Project Disease Burden section.

Perform Uncertainty Analysis
There are many sources of uncertainty in climate change health impact projections 
which, like other modeling efforts, are inherently uncertain due to both model 
uncertainty (i.e. uncertainty resulting from simplification of complicated real-world 
processes) and parameter uncertainty (i.e. uncertainty resulting from incomplete 
knowledge regarding the specifics of model parameters and their interactions in 
future). There are established methods for identifying and quantifying uncertainty in 
climate change disease burden projection efforts that will be discussed further in the 
Evaluating Uncertainty section.

One significant source of uncertainty specific to climate change health impact 
projections is whether and how to model climate change adaptation, which has the 
potential to reduce climate change impacts, including those on public health. Failure 
to account for adaptation in disease burden projections can introduce a systematic 
bias that will likely result in overestimation of effect. Various ways to account for 
adaptation in disease burden projections are discussed in the section on Adaptation.

Adaptive Management
Adaptive management entails the use of models to help make management decisions 
about complex systems. An adaptive management approach is iterative and couples 
model development and outputs with stakeholder engagement. Adaptive management 
is becoming increasingly common in public health; its potential application to climate 
change adaptation is discussed in the section on Adaptive Management. 
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Causal Pathways

Figure 3. The elements of a causal pathway and their relationship.

Causal pathways outline and diagram the steps between an exposure and its health 
outcome.15 Environmental drivers are seen in causal pathways for a wide range 
of health outcomes, from physical activity and obesity16 to cancer.17 In the case of 
climate-sensitive health outcomes, causal pathways link an environmental hazard or 
other environmental exposure to a change in the incidence of specific adverse health 
outcomes, and many causal pathways for climate sensitive outcomes have already 
been developed.18-23

The links in a causal pathway may be hypothesized – for example, a link between a 
climate hazard such as sea level rise and a health-relevant exposure such as drinking 
water salinization that has not been widely documented in the US as yet – but must 
be consistent with current understanding of the exposure and disease pathogenesis.24 
Consistent with current understanding of the social determinants of health,25 a range 
of socio-economic, ecological, infrastructural, and other types of factors should be 
included if there is reason to believe that these factors may modify the association 
between the exposure and health outcome. 

Practitioners should develop causal pathways tailored to their jurisdiction for each 
climate-related hazard they wish to study. These pathways should be developed 
with attention to scope and scale, both of which should be matched to the health 
department’s jurisdiction. The complexity of these pathways is likely to increase  
with the inclusion of intermediate factors that modify the hypothesized association, 
and this has implications for modeling the association. The pathways will serve 
several purposes:

1. Characterization of the health outcome’s climate sensitivity.

2. Identification of important underlying drivers and potential effect modifiers.

3. Development of an inventory of variables to include in the exposure-outcome 
model.

4. Identification of data needs for the modeling effort.

5. Characterization of knowledge gaps and significant areas of uncertainty.

In scaling the exercise, practitioners may want to be attentive to the points at which 
interventions—behavioral, medical, and otherwise—might be applied.24 For example, in 
regards to climate change and heat-related illness, local conditions such as population 
exposure (e.g., proportion of the population with air conditioning, proportion of the 
population working outdoors, etc.) and population vulnerability (e.g., proportion of 
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elderly in exposed population, proportion of school-age athletes practicing outdoors 
during summer months, etc.), as well as local modifying factors (e.g., magnitude and 
extent of the urban heat island, distribution of green space, and other concomitant 
non-climate stressors) are all important to consider. 

Practitioners should also attend to how climate change is likely to impact the 
exposure(s) in their causal pathways. This is particularly important when climate 
change is expected to have multiple relevant environmental impacts. For instance, 
changes in temperature and precipitation can lead to drought, which 
is hypothesized to impact the incidence of coccidioidomycosis, a 
fungal respiratory infection.26 A causal pathway for this disease might 
thus include temperature and rainfall as drivers distinct from drought 
to capture independent associations. Similar concerns emerge in 
relation to many different climate-sensitive infectious diseases,27 
other ecologically-driven health impacts,28 and impacts mediated by 
changes in ecosystem services.29 In addition to interactions between 
specific drivers and health impacts, this set of concerns may also 
relate to the nature of the associations, i.e.,  
whether there is a threshold effect above or below which health 
impacts are observed or the relationship between exposures and 
outcomes may change.

Some causal pathways may be more comprehensive than the health 
outcome that is eventually modeled. For instance, many relationships 
between climate change and mental health impacts have been 
postulated and a causal pathway has been developed.23 This pathway 
outlines direct mental health impacts such as post-traumatic stress 
disorder after weather-related disasters and displacement, but also 
indirect pathways such as degradation of community well-being and 
associated mental health impacts. Modelers may include a wide range 
of impacts in their causal pathway but not model each due to lack of 
validated measures for particular exposures or outcomes or lack of 
available data, perhaps due to lack of prior exposure (e.g., disaster and 
displacement) in their jurisdiction. Similarly, not all the steps in a causal pathway may 
be explicitly modeled, but they should be included to facilitate in uncertainty analysis 
and consideration of adaptation options.

In many cases, the pathways leading from environmental conditions to human 
exposure to actual morbidity and mortality are remarkably complex.1 Consequently, 
the easiest pathways to model are the ones that are most direct, i.e., the ones with 
the shortest and least complex causal pathways, and the most consistent pathways, 
i.e., those that depend on physiological mechanisms that have been shown to be 
consistent across populations, at least in settings relevant to the modeling effort. This 
is not to divert attention away from complex pathways or to discourage modeling 
of pathways that may be relatively specific to a given location, however, but to 
highlight that some modeling efforts will be able to build on prior work while others 
will break new ground. Table 1 presents a range of causal pathways developed for 
various climate-related health outcomes, illustrating the variety of complexity for 
characterizing causal pathways.

Questions to 
consider…
1. Have there been 

epidemiologic 
studies in your 
geographic location 
relevant to this 
causal pathway?

2. Is there more 
than one route of 
exposure?

3. If there are multiple 
modifiers in the 
causal pathway, 
how will you decide 
which to include in 
your disease burden 
projection?
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Assemble Data Elements
Acquiring, organizing, and managing the data elements require explicit understanding 
of the steps involved for the modeling effort. The causal pathway diagram(s) can 
be used to develop an inventory of the data needed to model future disease burden. 
Specifically, climate projections, baseline disease burden, an estimate of the exposure-
outcome response, and a characterization of the population of concern will need to 
be collected. Interdisciplinary collaborations may be necessary for acquiring and 
using data. An example matrix of needed data elements and some possible sources is 
presented in Figure 4.

Figure 4. The relevant data components and potential sources for modeling future 
disease burden.

Data Element: Climate Data 
Retrospective climate data, particularly metrics pertinent to human health (e.g., daily 
temperature, precipitation, dew point), can be retrieved in a variety of measurement 
forms from the National Oceanic and Atmospheric Administration’s (NOAA’s) Global 
Historical Climatology Network (GHCN) or the National Land Data Assimilation 
System (NLDAS). For instance, the CDC’s Environmental Public Health Tracking 
program has archived NLDAS weather data transformed to county centroids. Climate 
data from the past is linked with retrospective health data in epidemiological analyses 
to assess how climate-sensitive morbidity and mortality is affected by changes in 
environmental exposures. 

A necessary step in projecting future burden of climate-sensitive disease is projecting 
the future climate. This is done using global climate models (GCMs). Several GCMs 

http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
http://ldas.gsfc.nasa.gov/nldas/NLDAS2model.php
http://ldas.gsfc.nasa.gov/nldas/NLDAS2model.php
http://ephtracking.cdc.gov
http://ephtracking.cdc.gov
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can be used in tandem to produce groups of projections (termed “ensembles”) that 
can help reduce uncertainty by providing a range of projected outcomes. 

Two examples of ensembles are the phase 3 and phase 5 outputs from the Climate 
Model Intercomparison Project. Phase 3 (CMIP3) was an unprecedented collection 
of GCM outputs38 used to support the third U.S. National Climate Assessment 
(NCA) report. Phase 5 (CMIP5) is an updated ensemble that was used for the 
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report. 
CMIP5 created a standard set of climate change experiments and included over 
forty GCMs projecting future climate conditions for different time periods and levels 
of greenhouse gas emissions. These ensembles can provide projections of near 
term (through 2035) and long term (2100 and beyond) climate. Typically, near term 
projections are more compatible with the timeframe of public health adaptation.

GCMs are the primary tool used to project climate change. The term “projection” is 
distinct from “prediction.” A “prediction” is an estimate of the probability of future 
events based on current knowledge and assuming that current conditions will remain 
essentially constant. A “projection” is an estimate of the probability of future events 
if certain conditions evolve.39 The distinction is important, as climate projections 
depend on characterizations of future societal choices likely to generate certain levels 
of greenhouse gas emissions. 

Uncertainty in GCM projections
The three important categories of uncertainty in GCM projections are: (1) that 
deriving from different approaches to modeling, (2) that deriving from natural 
climate variability, and (3) that deriving from different emissions scenarios.

The uncertainty associated with different approaches to modeling can, to 
some degree, be addressed through use of projections from multiple GCMs: 
Using projections from a random sample of ten or more GCMs may provide 
a representative sample of scientific uncertainty.40 Multi-model ensembles 
do not capture the full range of scientific uncertainty because differences in 
model outputs may cancel out in the average ensemble output.  

The uncertainty associated with natural climate variability can best be 
managed by increasing the number of model runs included. Due to natural 
variability, even projections from the same model can be notably different.41 
Each modeling group produces 1–9 GCM runs for each scenario and period. 
Natural variability can be reduced by using the average of each GCM’s runs 
or propagated by including each run in the sample used to project health 
impacts. 

Societal uncertainty is represented by the emissions scenarios. For the 
middle of the 21st century, the four RCPs provide largely similar U.S. climate 
projections. Thus, some studies use an ensemble of GCM from only one RCP 
for this period. However, there is a large divergence in climate projections 
from the four RCPs by the end of the century. As a result, climate change 
health impact projections should use GCM outputs based on two or more 
RCPs for projections for projections beyond 2050.

http://cmip-pcmdi.llnl.gov/
http://cmip-pcmdi.llnl.gov/
http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
http://cmip-pcmdi.llnl.gov/cmip5/index.html?submenuheader=0
http://www.ipcc.ch/report/ar5/
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Certain scenarios of future conditions agreed upon by expert consensus are used to 
run the models. These scenarios make assumptions about future conditions such as 
population, anticipated greenhouse gas emissions, and adaptation efforts. Two main 
groups of scenarios have been used in recent years. CMIP3 used scenarios from the 
IPCC Special Report on Emissions Scenarios. CMIP5 and the IPCC Fifth Assessment 
Report used Representative Concentration Pathways (RCPs) to represent four 
greenhouse gas emissions trajectories and levels.42 An RCP can be interpreted as the 
increase in the amount of energy in the earth system from greenhouse gas emissions. 
RCP 8.5 is the pathway associated with the highest emissions. In contrast, the pathway 
associated with the lowest emissions (RCP 2.6) implies immediate and significant 
emissions reductions. Complimentary Shared Socioeconomic Pathways provide more 
details on how society may develop to produce different RCPs.43 At the time the RCPs 
were developed, none was considered more likely than another; rather, the scenarios 
provide boundaries within which impacts can be explored.

Of the various outputs from GCMs, several are relevant for public health 
considerations. Projections of future temperature, precipitation, and sea level rise are 
outputs commonly used to inform future disease burden attributable to climate change. 
These outputs are often available in a variety of measurements (e.g., average monthly 
temperature, days above a certain temperature percentile, nighttime low temperatures, 
number of annual heat waves, etc.), each of which may be of varying degrees of 
usefulness depending on the disease of interest. Other available outputs, such as future 
wind patterns, levels of ocean acidity, and soil moisture, may or may not be useful for 
health practitioners depending on causal pathway of the disease being projected.

Projecting some localized health outcomes may require precise climate projections 
provided by downscaled (estimated with finer geographic resolution) climate models. 
Typically, GCMs produce gridded outputs that operate on the scale of hundreds of 
miles. Such estimates may not be appropriate for informing interventions aimed at 
modifying risk at a relatively fine scale. For example, substantial variation of heat 
exposure at a neighborhood scale has been observed,44,45 and interventions such as 
changes in land use and land cover may significantly affect exposure at a fine (e.g. 
neighborhood) scale.46-48 Statistical techniques or weather modeling techniques 
can downscale temperature and precipitation simulations to a finer scale for such 
applications. The North American Regional Climate Change Assessment Program 
(NARCCAP) is an international program that provides multi-model regional climate 
model simulations at a scale (e.g., 50 km2) relevant to public health programs.49 Health 
departments can use regional climate models or statistically downscaled projections 
to obtain future climate data. 

In some instances, climate trends may be most appropriate for evaluating changing 
disease burden in response to a changing climate. NOAA developed eight regional 
and a national climate trends reports for the third NCA. The reports consider climate-
related outcomes, like extreme precipitation, for a future timeframe and provide 
probabilities that such conditions will be below normal, normal, or above normal. 
These reports are specific to regional climate, which may not be useful to a city or 
municipality, but can be useful for state or regional health authorities.

http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0
http://www.narccap.ucar.edu/index.html
http://scenarios.globalchange.gov


15

Data Element: Baseline Disease Burden
In order to determine the future impact of climate change, baseline estimates of 
disease burden must first be established. There are three primary elements to this 
activity:

1. Determine the scale of the effort as noted in the Causal Pathway section.

2. Choose an indicator of disease burden.

3. Determine baseline disease burden estimates.

Determine the Scale of the Effort
There are two areas in which the scale of the effort needs to be specified: geographic 
(spatial) and temporal. 

The geographic scale has two components: the geographic extent of the area being 
modeled, and the level of detail at which exposures will be projected. The area being 
modeled is likely to be determined primarily by the health department’s jurisdiction, 
by ecological considerations related to the disease being modeled, and by scoping 
exercises undertaken earlier in the BRACE process. In many instances, the exposure 
(e.g., heat) is local, but in some (e.g., ciguatera fish poisoning),50 the exposure may 
have significant remote drivers (fish containing ciguatoxin may be harvested from 
remote fisheries and shipped long distances, and the relevant weather and climate 
factors are geographically remote from the actual human exposure). Certain 
exposures, such as air pollution related to wildfires, may have both local and regional 
determinants.51 The level of detail required for exposure modeling will depend on the 
nature of the exposure and how well it can be captured at the standard scale of GCM 
outputs. In some instances, e.g., modeling of neighborhood heat exposure,44-46,48 this 
scale will not be adequate and additional downscaling will be needed.

Temporal scale is largely determined by the health department’s planning time 
horizon. The time horizon may be influenced by the nature of possible interventions 
being considered, e.g. changes in land cover patterns to reduce heat exposure, some 
of which will require decades to mature.47 The nature of the disease process is also 
a consideration; health impacts from increased mobilization of carcinogens, for 
instance, may require a longer time horizon given the nature of carcinogenesis.

Choose an Indicator of Disease Burden
Various data sources and indicators can be used to measure, track, and describe 
current and future disease burden. Once a health impact has been chosen, the 
appropriate indicator should be chosen. Health indicators are measures of population 
health status in relation to environmental factors, in this case climate change. Health 
departments can adapt existing indicators or develop their own indicators.52 The State 
Environmental Health Indicators Collaborative (SEHIC) of the Council of State and 
Territorial Epidemiologists (CSTE) has developed guidance on developing climate 
change indicators53 and also maintains a list of 24 potential climate and health 

http://www.cste.org/group/Indicators
http://www.cste.org/group/Indicators
http://www.cste.org/
http://www.cste.org/
http://c.ymcdn.com/sites/www.cste.org/resource/resmgr/EnvironmentalHealth/ClimateChangeIndicatorsRepor.pdf
http://c.ymcdn.com/sites/www.cste.org/resource/resmgr/EnvironmentalHealth/ClimateChangeIndicatorsRepor.pdf
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indicators including information on relevance, data sources, and limitations.54  
Other useful sources for selecting indicators include the Environmental Protection 
Agency’s Climate Change Indicators in the United States, which includes information 
on potential indicators for Lyme disease and heat, as well as recent research on 
deriving indicators55 and choosing which indicators may be particularly useful for 
specific applications.56

Determine Baseline Disease Burden Estimates
Both estimates of baseline prevalence and underlying incidence will be needed. For 
some health outcomes, such data is regularly collected and is available publicly or to 
appropriate authorities. Surveillance systems, such as CDC’s Environmental Public 
Health Tracking Program57,58 are good data sources. State and local health department 
surveillance systems, such as NC Detect,59 also contain useful data, although it is 
not always easily accessible. Some federally-administered datasets, e.g., the National 
Emergency Department Sample of the Healthcare Cost and Utilization Project,60 may 
also be useful in establishing baseline prevalence and annual incidence estimates.

Baseline prevalence can be described in terms of varying health outcomes and 
geographic and temporal ranges (e.g., heat-related emergency room visits per summer 
in a certain county; state-wide existing diagnosed asthma cases). The specific measure 
of prevalence can be chosen based on available data, health priorities, and ability to 
model the measure. 

Example: Baseline asthma prevalence
Asthma is one example of a climate sensitive disease that has readily 
available prevalence data. CDC’s National Environmental Public Health 
Tracking Network contains multiple indicators for asthma prevalence rates 
among adults and children as well as number of emergency department 
visits and hospitalizations at the county level. All of these data are publicly 
available and downloadable. Climate change has the potential to impact 
asthma rates through multiple pathways, including increased production 
of pollen (related to increasing temperature and carbon dioxide levels and 
lengthening of the growing season) and increased photochemical smog 
(related to increasing temperatures). Using this prevalence data, health 
practitioners have a well-established baseline from which to determine an 
exposure-response relationship and project a future disease burden. Further 
information on the use of asthma indicators is available from the Council of 
State and Territorial Epidemiologists.

http://www.epa.gov/climatechange/science/indicators
http://www.epa.gov/climatechange/science/indicators
http://www.cdc.gov/nceh/tracking/
http://www.cdc.gov/nceh/tracking/
http://www.ncdetect.org/
http://www.hcup-us.ahrq.gov/nedsoverview.jsp
http://www.hcup-us.ahrq.gov/nedsoverview.jsp
http://www.ahrq.gov/research/data/hcup/index.html
http://www.cdc.gov/nceh/tracking/
http://www.cdc.gov/nceh/tracking/
http://www.cste.org/?page=EHIndicatorsAsthma
http://www.cste.org/?page=EHIndicatorsAsthma
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Data Element: Exposure-Outcome Response Function
An exposure-outcome function describes how the likelihood of an adverse 
health effect (outcome) is related to an environmental hazard (exposure). In 
different disciplinary settings, these may also be referred to as ‘dose-response’ or 
‘concentration-response’ functions. In the context of climate change, the exposures 
of interest could directly be weather-related, like ambient temperature, precipitation, 
extreme weather events; or, weather-mediated factors, like pollen levels or factors 
affecting the environmental presence of water-borne or vector-borne pathogens. 
A specific exposure could affect multiple health outcomes (e.g., heat can cause 
exacerbations of a range of diseases leading to morbidity and mortality), and specific 
health outcomes can have several environmental drivers (e.g., water-borne disease 
outbreaks may be associated with both temperature and precipitation). As described 
in the causal pathways section, the complexity in modeling the exposure-outcome 
relationship increases with the inclusion of intermediate factors affecting the 
exposure and the outcome.

A standard practice in deriving exposure-outcome functions in environmental 
epidemiology has been to link health and exposure data by common spatial (county, 
city or some administrative boundary) and temporal (day, month) variables. This 
methodology is most well developed in the field of air pollution epidemiology, and 
in examining the health impacts from ambient temperature. Since health data are 
commonly available for each day at the city or county scale, exposure data available 
from weather stations (for temperature) and/or monitoring stations (for air pollutants) 
located within the city/county jurisdictions are merged by day. In the absence of 
individual-level exposure information, an implicit assumption in this approach is that 
all individuals living within the particular jurisdiction were equally exposed. 

Once such retrospective datasets are assembled, time-series statistical models are 
utilized to derive an estimate of the change in the health outcome attributable to 
change in exposure of interest after controlling for other variables in the causal 
pathway that could affect that relationship.61 These models produce odds ratio or 
relative risk estimates for the health outcomes from changes in exposure. While 
these two estimates have different interpretations, they are mathematically similar in 
situations when the health outcome of interest has low prevalence.62 

Depending on the characterization of exposure as either binary (indicating presence 
or absence) or continuous, changes in health outcomes could be point estimates or 
correspond to a range of exposure values, respectively. For the latter, the estimated 
exposure-outcome relationship over the range of exposure values could be linear 
or non-linear, with non-linear functions indicating differential health impacts at 
different levels of exposure.63 Besides the time-series approach, the case-crossover 
methodology has been used to control for time-invariant factors (either for individuals 
or place) that could affect the exposure-outcome relationship.64 

Data availability to derive exposure-outcome functions is an important issue. For 
certain specific combinations of health outcome and exposure (e.g., impact of 
extreme heat on mortality), location-specific exposure-outcome associations can be 
estimated given available data.65 For some specific exposure-outcome function, such 
an empirical approach may be infeasible due to lack of data or scientific knowledge. 
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In such situations, the alternative may be to borrow an effect estimate derived in 
a different setting from the literature. While following this approach, there should 
be careful deliberation on whether the estimate obtained from the literature is 
appropriate for the specific population and climate where it is being applied. In 
other situations, there may only be a qualitative assessment about the directionality 
of change in health outcome from change in exposure. Approaches to obtaining a 
qualitative estimate could include expert consultation via the Delphi method66 or 
other, less systematic approaches.

Regardless of whether the exposure-outcome association is newly derived or taken 
from the literature it is treated the same way mathematically. The box on the damage 
function approach illustrates how the exposure outcome association, a, is used to link 
estimates of relative risk with data on the exposed population and the exposure to 
generate estimates (expressed as counts) of disease impact.

There are important considerations when deriving, interpreting, and applying 
exposure-outcome associations. Some of these issues are discussed in the next section 
on the source population.  

Data Element: Source Population
Estimates of the association between an exposure and outcome are specific to the 
context from which the exposure and outcome data were gathered. While it is  
possible that associations derived in one context may be applied to another, this 
introduces potentially significant uncertainty given the important 
role that population-level characteristics play in many climate and 
health outcome relationships. Thus, regardless of whether exposure-
outcome associations are newly derived and specific to the context  
in which they will be applied or if they are taken from the literature, 
it is critical to capture demographic and other information related 
to the setting from which the estimate was derived and assess for 
potential biases. 

Comparisons between current and projected populations can be 
important, particularly in areas where large changes in population 
demographics (e.g., aging or migration) are expected in coming 
decades. These factors are important to consider in regards to both 
their role in the association between the exposure and outcome 
under consideration and in regards to baseline health status. For 
instance, associations between temperature and exacerbations 
of respiratory disease such as chronic obstructive pulmonary 
disease (COPD), which commonly develops after years of tobacco 
smoke exposure, may depend significantly on the population age 
distribution in a given region, and crude estimates derived in a high-
prevalence region and unadjusted for age may not be appropriate for 
a region with a young population with lower levels of tobacco exposure.

While data specific to the context in which the health impact is being projected 
may be desirable analytically, developing new exposure-outcome associations can 
introduce other challenges. One relates to sample size: there may not be adequate data 

FOR YOUR 
CONSIDERATION…
1. What data sources will 

be used (e.g., state, 
county, city)?

2. Which data elements 
have common 
geographic and 
temporal resolutions?

3. How will the data 
elements be merged? 

4. What are the 
limitations of the 
data?
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to generate sufficiently precise estimates for the projected exposure range in some 
settings. Another issue relates to data combination. Bridging differentially scaled 
data can be challenging, but is not impossible. In the case of using fine spatial scale 
estimates, geographic or political boundaries common to public health interventions 
(e.g., census tracts) may not align with the gridded climate model output. One option 
is to conduct a spatial analysis that assigns each geographic unit (e.g., census tract) a 
climate model output estimate that contains the majority of the geographic unit (e.g., 
population centroid). 
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Project Disease Burden

Figure 5. Steps, data sources and suggested approaches for projecting disease burden.
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A climate change disease burden projection is a modeled, scenario-based estimate 
of the range of adverse health impacts associated with specified climatic change 
scenarios. These projections may focus on determinants of adverse health impacts 
(the distribution of exposures that serve as risk factors in the causal pathway) or 
extend the analysis to the health outcomes themselves.67 Either way, they aim to 
quantify components of the causal pathway linking environmental hazards and 
human health impacts on a population basis. Model outputs may be health impacts 
(such as deaths, disability-adjusted life years or DALYs, all-cause or cause-specific 
visits to the emergency department, laboratory-confirmed cases of a specific disease 
diagnosis, etc.) or a risk factor that is a determinant of future health impacts (such as 
temperature distribution or habitat suitability for vectors),67 though this document 
focuses primarily on projections of disease impacts.

Climate-related health effects are sometimes classified as direct (such as heat-related 
illness) or indirect (such as vector-borne disease), related to how quickly health 
outcomes are manifest in the exposed and the ecological complexity of the causal 
pathway. In reality a continuum exists and most health impacts are mediated by a 
variety of factors. Anticipating and modeling the impact of climate change on these 
complex factors can be difficult. For example, with vector-borne diseases such as 
dengue fever and West Nile infection, changes in temperature and precipitation could 
impact mosquito reproduction and feeding rate, distribution of mosquitoes both 
geographically and seasonally, viral replication within the mosquito, availability of 
standing water for breeding, and human exposure rates.68,69 In addition, the way that 
humans respond to climate change (such as shifts in land-use, water storage, or use of 
air conditioning) and events such as long-term droughts, flooding, or power outages 
will likely also affect future rates of vector-borne disease. The effect of all of these 
factors on disease prevalence will vary based on specifics of the local population and 
geography (e.g., demographics, urban/rural divide, local ecosystem dynamics). Since 
modeling these complex interactions can be a daunting task, simplified models are 
often employed. While uncertainty is introduced, the models contain components 
based on educated assumptions and incorporate the best available data. Models can 
also be used qualitatively for a general assessment of how climate change may affect 
the risk for certain health outcomes.70 

The World Health Organization (WHO) has used disease burden projections to 
estimate the global burden of some diseases attributable to climate change.71 The 
health impacts modeled were heat, coastal flooding, diarrheal disease, malaria, 
dengue, and undernutrition. While many of these outcomes are more applicable 
to developing countries and resource-poor environments, several (especially heat, 
flooding, and vector-borne disease) are relevant to the U.S. Cause-specific mortality 
in 2030 and 2050 with climate change and in the absence of climate change was 
projected, allowing for calculation of climate change-attributable impacts. The WHO 
methodology, referred to as “Climate Change Risk Assessment,” can be adapted 
for use by state and local health departments in the U.S. More information on this 
approach is available in the WHO report.71

The exposures of interest in climate change disease burden projections are taken 
from GCM projections. There are a host of issues related to model outputs that are 
relevant for generating estimates of these exposures, from which GCMs or ensemble 

http://www.who.int/globalchange/publications/quantitative-risk-assessment/en/
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GCM outputs are used, whether outputs are scaled down from their original relatively 
coarse resolution to a finer resolution more applicable for health impacts modeling, 
and what downscaling approaches are used (see Data Element: Climate Data). The 
issues attending these questions are complex and have been reviewed extensively in 
the literature. A thorough discussion is beyond the scope of this report, but Carbone 
has conducted a recent review.72 

Another issue is the question of how exposures are quantified for disease burden 
modeling once these other concerns have been addressed. For instance, public health 
practitioners may be interested in an exposure that is not a direct GCM output, such 
as a heat wave, which has variable definitions in the literature.73 In such cases, GCM 
outputs may need to be analyzed and manipulated to generate estimates of exposures 
relevant to the disease being projected, e.g., a contiguous series of days with maximum 
temperatures over some historical threshold.74

Most climate change disease burden projections have used what is referred to as 
“the delta method.” The delta method changes parameters in climate models to 
produce estimates of an exposure of interest both in the current and future scenario 
(e.g., current temperature compared to projected future temperature). The change, 
or delta, can be applied to exposure-outcome models to estimate future health 
burden. An overview of studies using the delta method was conducted by Gosling 
et al.75 The “damage function approach,” often used to estimate morbidity from air 
pollution from shifting energy sources,76,77 is an example of a method that can be 
applied to projecting health impacts from climate change.78 Essentially, this combines 
the different elements described above – projected change in exposure, baseline 
disease prevalence, the exposure-outcome functions and baseline population – in a 
mathematical function to derive an estimate of the disease burden. This approach has 
been widely used in assessing the adverse health outcome that could be avoided from  
improved air quality.79,80 

Equation for the damage function approach for projecting 
health impacts
Δy = y0(e

αΔx-1)Pop

Where:

Δy is the change in the health effect

y0 is the baseline incidence rate

α is a coefficient derived from the relative risk (RR) associated with a change 
in exposure 

Δx is the estimated change in exposure

Pop is the exposed population

National Research Council 81
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Figure 6. Changing health status over time, measured by disease prevalence.

A useful tool for projecting health impacts is the Environmental Benefits Mapping 
and Analysis Program (BenMAP). BenMAP is a software tool developed by the 
Environmental Protection Agency (EPA) that can be used to estimate health impacts 
of changes in air quality and is publicly available. While BenMAP has broader 
uses, it can be applied to health effects of climate change by inputting temperature 
projections from climate models to estimate future health impacts from decreased air 
quality. Voorhees et al 82 provide a methodology for estimating future excess heat-
related deaths with climate change by adapting BenMAP to incorporate temperature 
modeling and heat mortality health impact functions.

Other considerations are important, as well, such as how well exposures can be 
characterized, both in the retrospective analyses and in the GCM projections. For 
instance, levels of airborne pollutants (e.g. particulate matter) can be measured at 
monitoring stations and these measurements can serve as proxies for population-
level exposure to the same species at a larger spatial scale with some degree of 
confidence.83 Alternatively, in some settings, interpolated measurements can be used 
if direct observations are not available for the region or time frame needed. Similarly, 
temperature measured at one location is frequently used as a proxy for temperature 
exposure across a larger area.84 

In all cases, the assumption of scalability can facilitate health impact projection, 
though it is important to recognize that this simplification can come at a cost.  
Assumptions regarding extrapolation of exposure may mask significant variability in 
actual exposures at the individual level, obscuring dynamics that may be significant 
for public health action (see, for example, Jerrett et al. (2005) for a discussion related 
to particulate air pollution,85 and Harlan et al. (2013) for a discussion related to heat).86 
Periodic consultation with climate scientists may be helpful in clarifying some of the 
issues related to the GCM projections.

http://www.epa.gov/air/benmap/
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Adaptation
Adaptation is taking action to prepare for the effects of climate change. Public 
health adaptation efforts, some of which are already underway,87 are intended to 
reduce negative human health impacts.88 These can occur at multiple levels, from 
local (e.g., city heat wave adaptation plans) to international (e.g., international 
drought adaptation strategies). In contrast to mitigation, which seeks to limit 
future anthropogenic greenhouse gas emissions, adaptation seeks to reduce future 
vulnerability and minimize damages. Some potential mitigation activities, like 
global reduction in greenhouse gas emissions, are accounted for in some of the 
climate scenarios used to run GCMs, but adaptation activities typically are not. Thus, 
anticipated future adaptation can be included in health models so that projected 
health burdens are not overestimated. 

There are many different adaptations to climatic exposures, including passive 
adaptation (also known as “autonomous” adaptations) such as physiologic 
adaptation to heat exposure and active adaptations such as expansion in prevalence 
of mechanical air conditioning.88,89 The type(s) of adaptation efforts that might 
be included in health impact projections will depend on the temporal scale of the 
projection effort.89 Models can incorporate passive adaptation – for example, natural 
physiological acclimatization to warmer weather.90 They can also incorporate a range 
of potential active adaptations, many of which have been catalogued in the literature. 
For example, a wide range of adaptations related to climate-sensitive infectious 
diseases may reduce the impact of climate change on future disease burden, but 
different strategies are relevant at different time scales (e.g., short term development 
of an early warning system to ensure that current vulnerabilities to climate variability 
are effectively addressed, as compared to long term coastal management practices to 
prevent untreated sewage discharge due to combined sewer overflow during extreme 
rain events).91 Including potential adaptations can facilitate the use of projection 
models in adaptive management efforts.92 

Educated assumptions will need to be made as to what adaptation efforts are likely 
at the time scale being modeled. There is, as of yet, no consensus in the climate and 
health community regarding whether and how adaptations should be included in 
climate change health impact projections, and a wide range of strategies have been 
employed. In some cases, modelers choose not to include adaptation in order to avoid 
uncertainty and ease interpretation of impacts by contextualizing the impacts in 
the present state. However, if adaptations are not considered, the projected disease 
burdens are likely to be systematically overestimated, and this should be explicitly 
stated in reporting of results.
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Perform Uncertainty Analysis and  
Assess Sensitivity
Fundamentally, uncertainty relates to “imperfect knowledge,” the inability to fully 
know all of the factors affecting a particular process.93 There are many sources of 
uncertainty in climate change disease burden projections, mandating a strategy for 
identifying major sources, attempting to characterize their impacts on the analysis, 
and presenting sensitivity analyses with other findings. 

Here we focus primarily on uncertainty in the process of modeling the relationship 
between exposures and health outcomes and less on uncertainties in climate 
modeling. Please see the box on page 13 for some additional discussion of that issue.

Identifying Major Sources of Uncertainty
There are two major types of uncertainty: intrinsic, which is inherent to the system 
being studied, and extrinsic, which is related to the ways in which problems are 
conceptualized and data are collected and analyzed.94 Most effort goes into identifying 
and treating extrinsic uncertainties in climate change health impact projection as 
these uncertainties can be more easily quantified and assessed. However, both types 
of uncertainty are present throughout the modeling process and deserve modelers’ 
attention. Table 2 below outlines some examples of uncertainties specific to climate 
change disease burden projections.

A wide range of options are available for treating uncertainty at each stage of the 
modeling process, discussed below with a focus on treatment of extrinsic uncertainty.
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Uncertainty in Causal Pathways
Addressing uncertainty starts in the process of framing and articulating causal 
pathways.95 It is important to identify where structural uncertainties may be located 
(e.g., whether nonlinearities, delays, or threshold dynamics may be major concerns) 
and where parametric uncertainties are present (e.g., where little is known about 
the nature of specific relationships between variables in the pathway). Structural 
uncertainties are particularly common for vector-borne and zoonotic diseases,96 but 
can be seen with many different disease processes, while parametric uncertainties are 
common throughout environmental health.

Uncertainties in causal pathways and framing assumptions have not been a significant 
part of uncertainty analyses in recently published environmental disease burden 
assessments.95 However, examples of how uncertainty associated with framing 
assumptions might be treated have recently been introduced into the literature.97,98  

Uncertainty in Analysis
A host of strategies are available for identifying and treating uncertainty in analytic 
processes.99 To deal with structural uncertainties it is important to use appropriate 
modeling approaches. Structural uncertainties identified in the causal pathway may 
have analytical implications. In instances where dynamics between different actors in 
a disease process may be unclear, agent-based modeling may have a role,100 general 
additive models are appropriate for nonlinear dynamics,101 and complex dynamics 
can be handled by dynamic numerical models.102 In contrast, a more linear health 
burden assessment framework of the type elaborated on here may be appropriate for 
systems in which such dynamics provide a fair approximation of exposure-outcome 
associations. The association between ground-level ozone concentrations and 
pediatric emergency department visits for asthma is one example.103,104

To deal with structural uncertainties it is important to embrace as much diversity as 
possible in model inputs and evaluating the impacts of this wide input range on the 
model’s estimates. This process of systematically evaluating the effect of variations in 
model parameters is sometimes referred to as uncertainty analysis and sometimes as 
sensitivity testing. 

Three major categories of uncertainty that are particularly important to acknowledge 
and incorporate and some strategies for their treatment are listed in Table 3.
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MAJOR CATEGORY OF 
UNCERTAINTY

SOME TREATMENT STRATEGIES

Lack of knowledge regarding 
future emissions  

Include exposures derived from a range of 
emissions scenarios

Lack of knowledge related 
to exposure-outcome 
associations or a

Evaluate values of a within a certain range, e.g., 
within the bounds of the 95% confidence interval 
for the original estimate(s)

Lack of knowledge related to 
future conditions, including 
adaptation and demographic 
trends

Evaluate different central assumptions related 
to future conditions and adaptation, e.g. 
socioeconomic development, migration, prevalence 
of mechanical air conditioning

Table 3. Major categories of analytic uncertainty and some possible treatment strategies.

Uncertainty related to a, the second category listed in Table 3, bears further 
explanation. As illustrated in Figure 7, a higher a will, all other things equal, result in 
larger disease burden estimates (a higher a results in a larger Δ as illustrated by Δ

2
). 

In 2011, Kolstad and colleagues examined uncertainty in projections of the impact of 
climate change on diarrhea.105 Their estimates were sensitive to the specific climate 
model and emissions scenario used and to the value of a, as illustrated in Figure 8 
below. Their primary conclusion was that there remains significant uncertainty in 
projected health impacts due to low confidence in existing a estimates.

Several examples of uncertainty analysis in climate change disease burden projections 
may be useful. For instance, several studies have evaluated the impact of different 
emissions scenarios on projections of particular health impacts. Using a variance-
decomposition method, Wu and colleagues (2014) examined the effect of various 
emissions scenarios, definitions of heat waves, and values of a relating heat waves and 
health impacts. They found that projections of heat-related mortality were particularly 
sensitive to changes in a, which accounted for 32.2% of the variance in their estimates, 
while different emissions scenarios accounted for 23.7% and varying heat wave 
definitions (used to define exposure) accounted for 22.2% (other sources accounted for 
the remainder).106
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Figure 7. Effect of a on projected health impact. a determines slope; the higher a2 
correlates with a higher slope and thus a larger Δ2 disease burden.  

Figure 8. Schematic illustrating the effect of model choice and a on the magnitude 
of diarrheal disease estimates. In this case, estimates are expressed as relative risk 
of diarrheal disease in the setting of climate change relative to the risk without. From 
Kolstad and Johansson,105 used with permission.
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Uncertainty related to future conditions, the third category in Table 3, has been 
assessed less commonly in climate change disease burden projections to date. 
Several different studies have attempted to account for adaptation in their modeling, 
but most have not evaluated sensitivity to different future conditions apart from 
emissions scenarios. Hodges and colleagues, however, recently published an 
estimate of projected disease burden attributable to water, sanitation, and hygiene 
(WSH) conditions in China and included several different developmental pathways 
associated with varying levels of WSH-related infrastructure.107 They also accounted 
for demographic shifts including population growth and rural-to-urban migration, 
which has impacts on the WSH infrastructure to which people are exposed. They 
evaluated the sensitivity of their estimates to emissions pathway as well as to a 
and socioeconomic development trajectory and found that estimates were strongly 
sensitive to both emissions scenario and development trajectory and marginally so to 
variations in a.  

Reporting
Uncertainty in reporting relates to the inherent difficulties of conveying complicated 
findings to a wide range of audiences and in supporting policy decisions with science. 
Reporting uncertainty and determining how much uncertainty analysis to pursue 
are important considerations for health departments, which operate at the interface 
between management and public policymaking.

Given their role and limited resources to pursue extensive sensitivity analyses, it 
is important for health departments to attempt to engage policymakers regarding 
uncertainty and what types of sensitivity testing might be most useful for decision 
makers. Health departments will need to determine what uncertainties they feel are 
appropriate to assess, both as a result of the state of knowledge regarding the disease 
process(es) being modeled and as a result of policy maker needs. 

At a minimum, health departments should include an uncertainty or sensitivity 
analysis section in their reports highlighting the major uncertainties in their analysis. 
The section should discuss major sources of uncertainty, their treatment, and the 
results of sensitivity testing on results.

Health departments may decide to expand this discussion to include a broader 
discussion of uncertainties along the lines of international assessments like those 
done by the IPCC.108 There is now a comprehensive effort to clarify uncertainties and 
standardize estimates of confidence in assessment findings in IPCC and other high-
level assessments.109 As yet there is no specific guidance for clarifying uncertainties 
in reporting of health department projections of climate change health impacts, but 
guidance used in the National Climate Assessment for generating traceable accounts 
of findings and characterizing likelihood110 are applicable, as are examples from the 
National Climate Assessment regarding decision support. 

http://nca2014.globalchange.gov/
http://nca2014.globalchange.gov/report/response-strategies/decision-support
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Iterative Use of Disease Burden Projections:  
Adaptive Management
Many of the climate-sensitive health impacts that public health officials are interested 
in projecting occur within complex, adaptive socio-ecosystems. These are systems 
in which humans are the dominant actors and not all of the system’s behavioral 
dynamics are understood. Such systems tend to respond to management interventions 
in unexpected ways, sometimes leading to unintended consequences. 

Because such systems are incompletely understood, models that simulate their 
behavior can be useful in making management decisions. Adaptive management is 
an iterative approach to managing complex adaptive systems and designing, testing, 
and evaluating interventions that incorporates models explicitly into the management 
process.111  The approach prioritizes learning and regular modification of the models 
based on new information and seems better suited to management of complex 
systems than linear management models.112 

In 2004 the National Research Council outlined six major elements of settings in 
which adaptive management may be a useful approach:113

1. There are explicit management objectives that are regularly revisited  
and revised;

2. There is a model of the system(s) being managed;

3. There is a range of management choices to consider;

4. There are provisions for monitoring and evaluating outcomes;

5. There are mechanisms for incorporating learning into future decisions; and

6. There is a collaborative structure for stakeholder participation and learning. 

Because the health impacts of climate change are, in many cases, unfolding in the 
context of complex adaptive systems, several practitioners have suggested that 
adaptive management may be a useful tool for public health.12,13,114 The BRACE 
framework (discussed in the Executive Summary and diagrammed in Figure 1) is built 
around adaptive management principles.3

As yet there are few examples of how adaptive management and modeling have 
been used iteratively to facilitate public health adaptation to climate change. There 
are, however, abundant examples of how health impact assessments in other fields 
have guided public health decision making115,116 and facilitated interdisciplinary 
collaboration to better manage systems affecting health.117 Using climate change 
disease burden projections in climate change adaptation activities is conceptually 
very similar, with the distinction that models will be continuously updated as new 
information about climate change, climate-sensitive disease, and the behavior of 
complex adaptive systems comes to light.
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Limitations
This guide provides practical advice related to climate change health impact 
projections to health departments. While every effort has been made to make  
the guide useful, there are some limitations to the guidance in this report and  
its application. 

The first limitation relates to the state of the science of climate change and health, 
which is in its infancy. There is no “gold standard” approach for projecting climate-
related disease burden, as there is limited research and a lack of published literature 
analyzing the wide range of methodological and parametric issues. This report 
presents a narrowly-defined approach based on the limited existing research, with 
a focus on quantitative estimates. It presents an approach that has been applied to 
several different types of climate-sensitive health outcomes and been evaluated in the 
peer-reviewed literature. More recent extensions or elaborations of this approach or 
isolated examples of other approaches that have not been extensively vetted are not 
included here.

Another limitation is that the guide does not include an extensively-worked example 
using climate and health data. The next section does include applied discussions 
of how the report’s guidance can be applied to heat-related illness and waterborne 
disease. Recognizing the value of a stepwise illustration using real data, however, we 
will be working to develop additional technical guidance to supplement this report at 
a later date. 

Lastly, a note of caution: deriving quantitative estimates of future risk provides 
a specific number useful for a variety of planning and intervention purposes, but 
practitioners need to be mindful that despite the fact that the methods presented 
here can be used to develop quantitative estimates of future disease burden, there 
is inherent uncertainty in each step of the process. While this uncertainty can be 
assessed as outlined in the “evaluating uncertainty” section above, health departments 
should always bear in mind that the estimates are just that. 



33

Practical Examples
The following examples brings together the various elements outlined above to 
highlight two important health issues related to climate change in the U.S. – heat-
related illness and waterborne disease. These examples demonstrate the complexity, 
range of methodologies used and different datasets needed in order to estimate the 
potential burden of different diseases from climate change. 

Example 1: Heat-Related Illness

Causal Pathway 

Figure 9. Simplified causal pathway diagram for heat-related illness.

The adverse health impacts during extreme summer temperatures have been 
experienced across the globe. Populations across different age groups have found 
it hard to cope with anomalously high local temperatures. A range of mortality and 
morbidity outcomes have been associated with these high temperatures. All else being 
equal, certain factors attenuate this adverse effect either by reducing the intensity of 
heat exposure (via air conditioner use or increasing vegetative cover), or by caring 
for the people of concern such as the elderly and those with pre-existing medical 
conditions, or populations who are mobility challenged through establishing social 
support systems ( e.g., cooling shelters).

Assemble Data Elements

Climate Data

While climate model ensembles can project estimates of different metrics of 
temperature, it needs to be similar to the temperature metric used in derivation of 
the exposure-outcome function in order to project the disease burden associated 
with extreme heat. The most commonly used temperature metric used in projecting 
future burden of temperature has been a variant of observed temperature (maximum 
temperature or heat index) or the Spatial Synoptic classification.118 Potential sources 
of future temperature data include the CDC’s Environmental Public Health Tracking 
Network that hosts county-level measures of future temperature data produced by the 
CMIP3 models as part of the Third National Climate Assessment. Temperature data 
is available for the A2 and B1 scenarios defined by the IPCC. In order to derive the 

http://www.cdc.gov/nceh/tracking/
http://www.cdc.gov/nceh/tracking/
http://nca2014.globalchange.gov/
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exposure-outcome functions, comparable temperature metrics can be obtained from 
NOAA weather stations, or modeled data (North American Land Data Assimilation 
Systems, NLDAS) at the county scale that is also available on the Environmental 
Public Health Tracking Network. 

Baseline Disease Burden

A variety of health data have been used to assess the health risk from extreme heat, 
ranging from mortality to hospital admission, emergency room visits and emergency 
medical service calls.119-121 Most often, daily health data is obtained for a specific city, 
Metropolitan Statistical Area (MSA) or county. The baseline prevalence of mortality 
data could be estimated using National Vital Statistics System, while prevalence 
of morbidity outcomes could be estimated using health records obtained from 
surveillance systems either at the state or local level.

Exposure-Outcome Response Function 

The general approach to derive the health risk from extreme heat for specific locations 
is outlined.

 ■ Retrospective health outcome data (e.g. daily mortality, cause-specific ED visit 
or hospitalization data) for specific counties or cities is merged with daily 
estimates of ambient temperature. 

 ■ In a time-series modeling framework, the Poisson generalized additive model 
(GAM) is used to derive exposure-outcome functions for the smallest spatial 
unit of analysis (county/city). In the second step, a Bayesian hierarchical 
modeling technique is used to combine the location-specific estimates to 
produce regional estimates.122 

 ■ A variant of this approach has been the case crossover methodology. For each 
health episode, temperature profiles at the time of each reported “case” is 
compared to another time when no ill health was reported to determine if the 
“case” could be attributed to differences in temperature.123,124 

 ■ Recent development of the distributed lag nonlinear modeling framework 
offers a flexible modeling approach to characterize the potential non-linear 
relationship between heat and health over a period of time.125 The output  
from these models shows the different levels of health risk at different 
temperature values. 

 ■ These estimated exposure-response functions may vary (i) for specific 
demographic groups (e.g., age groups, sex); (ii) the kind of health outcome 
that is being modeled (mortality or morbidity for specific illness); and (iii) the 
suite of variables that are included in the model (e.g., air pollution, use of air-
conditioning that can potentially affect the outcome). 

Source Population

The exposure-outcome function will depend on a range of demographic (age 
distribution, socially isolated), health (access to healthcare, underlying comorbidities) 

http://www.cdc.gov/nceh/tracking/
http://www.cdc.gov/nceh/tracking/
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and socio-economic (income level) factors of the study population. Estimates of 
exposure-outcome functions for heat will be unreliable in situations where the number 
of health outcomes being analyzed is too few, particularly in areas with relatively 
small population. An alternative in these situations would be to obtain an exposure-
response function for extreme heat from the literature that has been estimated for an 
analog region with similar weather patterns and demographic distribution.126

Project Disease Burden
The three basic elements required to project the health burden related to future 
increase in extreme heat are – (i) the baseline risk of the health outcome in the 
population (M), (ii) the estimated exposure response function describing how the 
health risk would change over a range of exposures (R), and (iii) projections from 
climate models as to how the exposure would change in the future (ΔT). Examples of 
such projections are available both for mortality126,127 and morbidity outcomes.128 An 
example of combining these elements is outlined as:128

Excess health outcomes from projected heat = M * R * ΔT

Perform Uncertainty Analysis
Because health data is commonly available only at the county scale, all individuals 
in a county are assumed to be equally exposed to the temperature measured at the 
weather station located within the county or somewhere nearby. This often masks the 
high variability in the spatial distribution of temperature and health risk from extreme 
heat reported in metropolitan areas. For example, a study in Phoenix showed a large 
reduction in surface temperature for vegetated surfaces compared to bare surfaces, 
and that more affluent communities lived in areas with more vegetation.129 Thus in 
situations where a combination of higher ambient heat among low socio-economic 
status (SES) communities could actually lead to high localized health risk in certain 
areas, aggregating data up to the county and estimating the exposure response 
function at the county scale could be imprecise. However, the availability of data 
often limits the choices available for analyses at the fine spatial scales appropriate to 
capture such spatial variability in health risk. 
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Example 2: Waterborne Disease (Cryptosporidium)
Climate change is expected to affect waterborne disease in several ways, including 
impacts on water quantity via precipitation shifts and changes in the timing 
of snowmelt, impacts on water quality via shifts in precipitation intensity and 
temperature, and impacts on waterborne pathogen ecology via shifting water 
temperature.1,130,131 According to the third National Climate Assessment, drought-like 
conditions due to high temperatures and severe precipitation events are projected 
to affect many parts of the US.132 These changes could increase the potential for 
waterborne outbreaks.133-135 Among many potential diseases linked to changes in water 
quality, this example outlines a framework to quantitatively assess the link between 
climate change and Cryptosporidiosis.

Causal Pathway

Figure 10. Example causal pathway diagram for Cryptosporidiosis.

Cryptosporidiosis (commonly known as “crypto”) is a diarrheal disease caused 
by parasites, Cryptosporidium, that can live in human or animal hosts and are 
transmitted through infected stools. One of the most common causes of human 
waterborne disease,136 crypto caused the largest waterborne disease outbreak in US 
history.137 In healthy people it causes nausea, vomiting, cramps, and diarrhea that 
lasts 1-2 weeks; the infection can be fatal among the immunocompromised. Increased 
rainfall is associated with crypto outbreaks, particularly in moist tropical locations, 
whereas temperature is a stronger driver of crypto incidence in temperate regions.138 
Prolonged dry periods often lead to high concentration of the pathogen in surface 
and groundwater sources139 and subsequent periods of intense rainfall can increase 
pathogen loads in drinking and recreational water sources, increasing human 

http://nca2014.globalchange.gov/
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exposure.140 Proximity to intensive livestock management systems have also been 
associated with increased disease incidence among humans.141 

Assemble Data Elements
Depending on the approach taken, several different data elements might be required 
to model this proposed relationship.

Climate Data

Since Cryptosporidium transmission is influenced by temperature and precipitation, 
the climate models will provide projections for both variables. Compared to 
temperature, precipitation projections contain much more uncertainty. Specifically, 
convective summer season precipitation is particularly difficult to model. The 
preceding extreme heat example discussed using GCM from the Environmental 
Public Health Tracking Network. For illustration, we briefly discuss accessing 
statistically downscaled climate projections. The process of statistical downscaling 
standardizes projections from each model and provides more localized information. 
The U.S. Geological Survey Geo Data Portal provides access to existing collections 
of climate projections. Users can select a study area by uploading a geographic file 
(shapefile) of political boundaries or interactively drawing a study area. For example, 
the CMIP5 Bias Corrected Constructed Analogs V2 provides both historical daily and 
future temperature and precipitation projections.

Baseline Disease Burden 

In the U.S., clinically diagnosed human Cryptsporidium cases must be reported to a 
local health department (Nationally Notifiable Disease). In turn, the CDC compiles 
state level information into case counts that are published in the Morbidity and 
Mortality Weekly Report. Project Tycho provides public access to weekly notifiable 
disease counts from 2006 to 2014.142  

Exposure-Outcome Response Function 

There are three sources of exposure-outcomes association. The function(s) can be 
locally derived, pulled from the literature, or mathematically modeled.

1. Deriving local functions requires historic weather and health outcome 
surveillance information. Individual level risk factors (e.g. immune status) 
would be beneficial but are not required. The historical daily observations are 
aggregated (averaged or summed) across the state and over each week. The 
weekly weather and human weekly reported Cryptosporidium counts are aligned 
for statistical analysis. 

A time-series analysis can be used to associate weather against weekly 
Cryptosporidium counts.143 Sensitivity testing determines the best fitting 
temporal lag between weather and human cases. The temporal lag may reflect 
the pathogen’s transportation time, incubation period, or the time between the 
patient reporting symptoms and seeking healthcare.144 

http://www.cdc.gov/nceh/tracking/
http://www.cdc.gov/nceh/tracking/
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A similar suite of time series statistical models used in the extreme heat 
example can also be applied to waterborne disease modeling. The weekly 
Cryptosporidium counts are commonly modeled with a Poisson or Negative 
Binomial distribution. Water quality measures may also be used as a proxy of 
waterborne disease risk.145 However, there are inconsistent relationships between 
turbidity and health outcomes. 

In addition to case reports, case crossover study designs have been applied to 
waterborne disease. This methodology is well suited for relatively rare and acute 
events. In England and Canada, extreme rainfall events increased the odds of a 
reported waterborne disease outbreak.146,147  However, in England, multi-week dry 
periods also increased the chances of an outbreak.147 

2. If functions are to be derived from the literature, the analyst will need to conduct 
a comprehensive literature review as discussed above. As of this writing, 
one meta-analysis of the association between weather variables and crypto 
infections has been performed.138 These analysts used locally-derived z-scores  
of monthly temperature and precipitation as the exposure variables and  
monthly counts of crypto infection incidence among healthy individuals as the 
outcome and stratified their analysis based on climate region and distance from 
the equator. There is thus some ability in this case to choose a response function 
that is representative of the climate region for which the projection is being 
done.

3. A third alternative is to use a tool linking exposure with health outcomes. 
Such tools are not available for all climate-sensitive health outcomes, but for 
waterborne and foodborne disease, the Quantitative Microbial Risk Assessment 
tool, developed by the European Centers for Disease Control (ECDC) and one 
of several QMRA apps, provides a decision support framework to assess disease 
risk from climate change. The tool uses the following sequence of steps to take 
users through the assessment: 

 ■ Identification of the potential risk and exposure pathway 

 ■ Assess the potential individual exposure to the pathogen

 ■ Obtain a dose-response function liking pathogen exposure to health 
outcome, either from literature or from data analysis depending  
on availability

 ■ Combine the estimated exposure from the exposure assessment with the 
dose-response to characterize the risk of infection.

A series of modules with underlying mathematical equations representing 
pathogen processes are combined with user provided parameter values to produce a 
comparative risk assessment of infection risk under different climate scenarios. 

A user of the QMRA tool can input temperature and precipitation values to 
characterize current and future climate conditions. There are three different 
transmission types of Cryptosporidium that can be modeled using the tool—drinking 
water, bathing water and oyster consumption. The pathways driving individual 

http://www.ecdc.europa.eu/en/Pages/home.aspx
http://qmrawiki.msu.edu/index.php?title=QMRA_Apps_and_Calculators_(beta)
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exposure to the pathogen can be described using a combination of different modules—
combined sewer overflow, surface run-off of water, drinking water treatment, volume 
of ingested water, and temperature dependent inactivation/die-off of pathogen. 
Each of these modules is based on a series of mathematical equations describing the 
process that affects the transmission of the pathogen. Users with local knowledge 
can alter the preset parameter values in these modules for customization. The dose 
response function for Cryptosporidium is preset based on a review of the literature. 
Once these inputs are provided, the model outputs a relative risk estimate that 
indicates if the risk of infection is higher or lower after the projected climate change 
compared to the current conditions.

Source Population

Important at-risk groups include children, the elderly, pregnant women, people with 
co-morbidities, and the immunocompromised.148 Similarly, communities that access 
private wells or minimally treated ground water may face increased risk during 
extreme weather events.149,150 Combined sewer overflow events increased pediatric 
gastrointestinal illness rates in Milwaukee, WI.151

Project Disease Burden
The outputs from the QMRA tool provide an estimate of the relative risk of the 
waterborne disease under the specified climate scenario compared to a current 
baseline. If dose-response functions can be derived for specific health endpoints 
and weather variables, then the damage function approach outlined before could be 
adapted to estimate the changes in the health outcome being examined.

Perform Uncertainty Analysis
Baseline disease burden estimates including prevalence and incidence estimates will 
be required. Such an analysis will determine the relationships between the exposure 
variables with all-other-factors held constant, including lag structures, which may be 
important when considering increased precipitation after periods of drought.

http://www.ecdc.europa.eu/en/Pages/home.aspx
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Glossary
a (alpha): A symbol often used in the damage function approach to denote the 
parameter estimate linking exposure with the relative risk of a given health outcome 
in a linear exposure-response function. a represents the slope of the line linking the 
risk of a given health outcome at a given exposure (nonlinear exposure-response 
functions are represented using different equations). Mathematically, a is the natural 
logarithm of the regression coefficient in a regression model. See the box on the 
damage approach function for more information on the mathematical expressions and 
relationships.

Adaptive Management: An iterative or cyclic process meant to facilitate management 
of complex adaptive systems through the use of models, stakeholder engagement, 
and continuous integration of new information about the system and its response to 
management activities.

BRACE—Building Resilience Against Climate Effects: An iterative framework 
developed by the CDC Climate and Health Program for public health organizations 
enhancing climate readiness. The framework outlines steps in the process of 
identifying and estimating possible climate change health impacts in a given location 
and determining which public health interventions might reduce adverse impacts.

Climate Change Adaptation: The process of making adjustments to reduce climate 
change impacts or take advantage of anticipated changes. It can be active, i.e., planned 
explicitly in anticipation of pending change, or passive, i.e., in response to perceived 
changes and without explicit planning.

Climate Change Disease Burden Projections: Scenario-based estimates of future health 
impacts associated with changing environmental exposures associated with climate 
change. Climate change disease burden projections are a variant of disease burden 
assessment that focus on the potential effects of a changing climate. They are derived 
using scenario-based projections of climate change impacts (derived from global 
climate models and used as part of the exposure) and linked, via exposure-outcome 
functions, to health impacts known to be sensitive to environmental conditions.

Disease Burden Assessment: The National Research Council defines disease burden 
assessment as “a systematic process that uses an array of data sources and analytic 
methods, and considers input from stakeholders to determine the potential effects 
of a proposed policy, plan, program, or project on the health of a population and the 
distribution of those effects within the population. HIA provides recommendations on 
monitoring and managing those effects.”152

Global Climate Models (GCMs): GCMs are complex computer models of the Earth’s 
atmosphere and underlying surfaces, including ocean, land, and ice. They are used to 
describe, analyze, and project the behavior of the climate system. There are several 
GCMs housed in different research centers globally, and each GCM is slightly different 
in its treatment of important atmospheric and other dynamics. Using scenarios of 
greenhouse gas emissions and other forcings, GCMs simulate future climate states. 
The data from these simulations are used as exposures in climate change disease 
burden projections.
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